Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Chinese Journal of Microbiology and Immunology ; (12): 451-457, 2023.
Article in Chinese | WPRIM | ID: wpr-995310

ABSTRACT

Objective:To investigate whether KtrA was a binding protein of c-di-AMP, the second messenger in Leptospira, and to explore the function and regulatory mechanism of the c-di-AMP-KtrA/B system. Methods:KtrA gene was amplified by PCR and cloned into pET42a plasmid to construct the pET42a ktrA prokaryotic expression vector. Then the vector was transferred into E. coli BL21DE3 to construct an engineering bacterium E. coli BL21DE3 pET42a-ktrA for the expression of recombinant KtrA (rKtrA). The expressed rKtrA was purified by affinity chromatography. BIAcore technology was used to detect the binding ability of rKtrA to c-di-AMP. Bacterial two-hybrid analysis was used to analyze the interaction between KtrA and KtrB in the leptospiral Ktr system with or without exogenetic c-di-AMP. The above genes were then complemented into the potassium transport-deficient E. coli mutants to analyze the function of the c-di-AMP-KtrA/B pathway. Results:An prokaryotic engineering bacterium for the expression of ktrA gene of Leptospira was constructed successfully. The purified rKtrA could specifically bind to c-di-AMP. There was interaction between KtrA and KtrB, but the interaction could be dissociated by c-di-AMP. The KtrA/B system was involved in potassium ion uptake and it was negatively regulated by c-di-AMP. Conclusions:Leptospiral KtrA was a c-di-AMP-binding protein and the c-di-AMP-KtrA/B system was involved in potassium ion transport.

2.
International Journal of Pediatrics ; (6): 29-33, 2022.
Article in Chinese | WPRIM | ID: wpr-929798

ABSTRACT

The ions transport in human cells plays a key role in maintaining normal physiological functions of cells, and the solute transporter(SLC)is responsible for most of the ions transport in somatic cells.The SLC12 family encodes electrically neutral cation-coupled chloride ion cotransporters, which are essential in maintaining intracellular and extracellular chloride balance and related cellular physiological processes.At present, there are 9 members of SLC12 family, and the expression and distribution of these family members are tissue-specific.They are distributed in renal tissues and mainly expressed in renal tubular epithelial cells, and their distribution and expression are significantly different, so their physiological roles in kidney are also different.This article will briefly review the physiological role of SLC12 family in kidney and related renal tubular diseases.

3.
Chinese Journal of Biotechnology ; (12): 1424-1432, 2019.
Article in Chinese | WPRIM | ID: wpr-771787

ABSTRACT

Important progress has been made in the interpretation of subcellular location, ion transport characteristics and biological functions of endosomal Na⁺,K⁺/H⁺ antiporter in Arabidopsis thaliana. The endosomal Na⁺,K⁺/H⁺ antiporter contain two members, AtNHX5 and AtNHX6, whose amino acid sequence similarity is 78.7%. Studies have shown that AtNHX5 and AtNHX6 are functionally redundant, and they are all located in Golgi, trans-Golgi network (TGN), endoplasmic reticulum (ER) and prevacuolar compartment (PVC). AtNHX5 and AtNHX6 are critical for salt tolerance stress and the homeostasis of pH and K⁺. It has been reported that there are conservative acidic amino acid residues that can regulate their ion activity in the endosomal NHXs transmembrane domain, which plays a decisive role in their own functions. The results of the latest research indicate that endosomal NHXs affect vacuolar transport and protein storage, and participate in the growth of auxin-mediated development in A. thaliana. In this paper, the progress of subcellular localization, ion transport, function and application of endosomal NHXs in A. thaliana was summarized.


Subject(s)
Arabidopsis , Arabidopsis Proteins , Endosomes , Sodium-Hydrogen Exchangers , Vacuoles
4.
Chinese Journal of Anesthesiology ; (12): 377-380, 2019.
Article in Chinese | WPRIM | ID: wpr-755564

ABSTRACT

Objective To evaluate the role of mitochondrial calcium uniporter ( MCU) in mitoph-agy in SH-SY5Y cells subjected to oxygen-glucose deprivation and restoration (OGD∕R). Methods SH-SY5Y cells were cultured in vitro, seeded in 96-well plates at a density of 2×105cells∕ml, and randomly di-vided into 4 groups (n=6 each) using a random number table method: control group (group C), group OGD∕R, OGD∕R plus MCU inhibitor group ( group OGD∕R + Ru360) and MCU inhibitor group ( group Ru360) . Cells were cultured in normal culture medium in group C. Cells were subjected to O2-glucose dep-rivation for 6 h followed by restoration of O2-glucose supply for 24 h in group OGD∕R. In group OGD∕R+Ru360, Ru360 at a final concentration of 10 μmol∕L was added at 30 min before O2-glucose deprivation, and the other treatments were similar to those previously described in group OGD∕R. Ru360 was added at a final concentration of 10 μmol∕L, and 30 min later cells were cultured under normoxic conditions in group Ru360. At 24 h of restoration of O2-glucose supply, cell counting kit-8 assay was used to detect the cell survival rate, JC-1 assay was used to detect mitochondrial membrane potential ( MMP ) , the ultrastructure of cells was observed with a transmission electron microscope, and the expression of p62, Tom20 and Bec-lin-1 was detected by Western blot. Results Compared with group C, no significant change was found in each parameter in group Ru360 ( P>0. 05) , the cell survival rate and MMP were significantly decreased, the expression of Tom20 and p62 was down-regulated, Beclin-1 expression was up-regulated (P<0. 01), the mitochondria swelled, and mitochondrial autophagosomes were increased in group OGD∕R. Compared with group OGD∕R, the cell survival rate and MMP were significantly increased, the expression of Tom20 and p62 was up-regulated, Beclin-1 expression was down-regulated (P<0. 01), the mitochondrial mor-phology kept well, and mitochondrial autophagosomes were decreased. Conclusion MCU is involved in the process of mitophagy in SH-SY5Y cells subjected to OGD∕R.

5.
Braz. j. med. biol. res ; 49(10): e5340, 2016. tab, graf
Article in English | LILACS | ID: biblio-951651

ABSTRACT

Undernutrition represents a major public health challenge for middle- and low-income countries. This study aimed to evaluate whether a multideficient Northeast Brazil regional basic diet (RBD) induces acute morphological and functional changes in the ileum of mice. Swiss mice (∼25 g) were allocated into two groups: i) control mice were fed a standard diet and II) undernourished mice were fed the RBD. After 7 days, mice were killed and the ileum collected for evaluation of electrophysiological parameters (Ussing chambers), transcription (RT-qPCR) and protein expression (western blotting) of intestinal transporters and tight junctions. Body weight gain was significantly decreased in the undernourished group, which also showed decreased crypt depth but no alterations in villus height. Electrophysiology measurements showed a reduced basal short circuit current (Isc) in the undernourished group, with no differences in transepithelial resistance. Specific substrate-evoked Isc related to affinity and efficacy (glutamine and alanyl-glutamine) were not different between groups, except for the maximum Isc (efficacy) induced by glucose. Transcription of Sglt1 and Pept1 was significantly higher in the undernourished group, while SN-2 transcription was decreased. No changes were found in transcription of CAT-1 and CFTR, while claudin-2 and occludin transcriptions were significantly increased in the undernourished group. Despite mRNA changes, SGLT-1, PEPT-1, claudin-2 and occludin protein expression showed no difference between groups. These results demonstrate early effects of the RBD on mice, which include reduced body weight and crypt depth in the absence of significant alterations to villus morphology, intestinal transporters and tight junction expression.


Subject(s)
Animals , Male , Rabbits , Malnutrition/physiopathology , Malnutrition/metabolism , Growth/physiology , Ileum/anatomy & histology , Ileum/metabolism , Animal Nutritional Physiological Phenomena , Time Factors , Body Weight , Energy Intake/physiology , RNA, Messenger , Immunoblotting , Acute Disease , Ion Transport/physiology , Malnutrition/complications , Disease Models, Animal , Intestinal Absorption/physiology
6.
Indian J Exp Biol ; 2015 May; 53(5): 273-280
Article in English | IMSEAR | ID: sea-158447

ABSTRACT

The decapod crustacean Penaeus monodon survives large fluctuations in salinity through osmoregulation in which Na+/K+-ATPase (NKA) activity in the gills plays a central role. Adult P. monodon specimens were gradually acclimatized to 5, 25 and 35‰ salinities and maintained for 20 days to observe long term alterations in NKA expression. Specific NKA activity assayed in gill tissues was found to be 3 folds higher at 5‰ compared to 25‰ (isosmotic salinity) and 0.48 folds lower at 35‰. The enzyme was immunolocalized in gills using mouse α-5 monoclonal antibody that cross reacts with P. monodon NKA α-subunit. At 5‰ the immunopositive cells were distributed on lamellar tips and basal lamellar epithelium of the secondary gill filaments and their number was visibly higher. At both 25‰ and 35‰ NKA positive cells were observed in the inter-lamellar region but the expression was more pronounced at 25‰. Gill architecture was normal at all salinities. However, the 1.5 fold increase in NKA α-subunit mRNA at 5‰ measured by quantitative RT-PCR (qRT-PCR) using EF1α as reference gene was not statistically significant. The study confirms the osmoregulating ability of P. monodon like other crustaceans at lower salinities. It is likely that significant increase in NKA transcript level happens at an earlier time point. At higher salinities all three methods record only marginal or no change from isosmotic controls confirming the hypothesis that the animal largely osmoconforms in hyperosmotic environment.


Subject(s)
Acclimatization/physiology , Animals , Gills/physiology , Ion Transport/physiology , Osmoregulation/physiology , Penaeidae/chemistry , /physiology , Salinity , Sodium-Potassium-Exchanging ATPase/physiology
7.
Braz. j. pharm. sci ; 51(3): 755-761, July-Sept. 2015. tab, graf
Article in English | LILACS | ID: lil-766318

ABSTRACT

Lectins have been described as glycoproteins that reversibly and specifically bind to carbohydrates. Legume lectins isolated from the subtribe Diocleinae (Canavalia, Dioclea andCratylia) are structurally homologous with respect to their primary structures. The Diocleinae lectins of Canavalia brasiliensis, Dioclea guianensis andCanavalia ensiformis have been shown to distinctly alter physiological parameters in isolated rat kidneys. Thus, the aim of this study was to investigate the effect of Cratylia floribunda lectin (CFL) on renal hemodynamics and ion transport in rats. In isolated perfused kidneys, CFL (10 mg/mL, n=5) increased RPP, RVR and decreased %TK+, but did not change urinary flow, glomerular filtration rate, sodium or chloride tubular transport. In isolated perfused mesenteric bed, CFL (3 and 10 mg/mL/min; n=4) did not alter tissue basal tonus or tissue contraction by phenylephrine (1 mM/mL/min). In conclusion, the seed lectin of Cratylia floribunda increased renal hemodynamic parameters showing a kaliuretic effect. This effect could be of tubular origin, rather than a result from haemodynamic alterations.


As lectinas são descritas como (glico)proteínas que se ligam, especificamente e reversivelmente, a carboidratos. Lectinas de leguminosas isoladas da subtribo Diocleinae (Canavalia, Dioclea eCratylia) são estruturalmente homólogas em relação às suas estruturas primárias. Demonstrou-se que as lectinas de DiocleinaeCanavalia brasiliensis, Dioclea guianensis eCanavalia ensiformis alteram diferentemente parâmetros fisiológicos em rins isolados de ratos. Dessa maneira, o objetivo deste estudo foi investigar o papel da lectina de Cratylia floribunda (CFL) na hemodinâmica renal e no transporte de íons em ratos. Em rins isolados perfundidos, CFL (10 mg/mL, n=5) aumentou a pressão de perfusão renal, a resistência vascular renal e reduziu o percentual do transporte tubular de K+, mas não alterou o fluxo urinário, a taxa de filtração glomerular e o percentual de transporte tubular dos íons sódio e cloreto. No leito mesentérico isolado perfundido, CFL (3 e 10 mg/mL/min, n=4) não alterou o tônus basal ou a contração do tecido induzida por fenilefrina (1 mM/mL/min). Em conclusão, a lectina de sementes de Cratylia floribunda altera parâmetros hemodinâmicos renais, provavelmente de origem tubular, e não por alterações hemodinâmicas.


Subject(s)
Rats , Ion Transport , Plant Lectins/analysis , Dioclea , Hemodynamics , Amiloride/analysis
8.
Indian J Biochem Biophys ; 2012 Dec; 49(6): 428-434
Article in English | IMSEAR | ID: sea-144083

ABSTRACT

The effects of low intensity (flux capacity 0.06 mW/cm2) coherent electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies and their combined effects with antibiotics — ceftriaxone or kanamycin (0.4 or 15 µM, correspondingly) on E. coli K12 growth and survival have been reported previously. To further study the effects of EMI and antibiotics and mechanisms, decrease in overall energy (glucose)-dependent H+ and K+ fluxes across the cell membrane was investigated in E. coli. The depression of H+ and K+ fluxes rate was maximally achieved with the 73 GHz frequency. The EMI strengthened the effect of N,N’-dicyclohexycarbodiimide (DCCD, an inhibitor of the F0F1-ATPase). The 73 GHz EMI had more influence on H+ efflux inhibition, whereas 70.6 GHz on K+ influx. Also, EMI strengthened the depressive effects of ceftriaxone and kanamycin on the overall and DCCD-inhibited H+ and K+ fluxes. The 73 GHz EMI strengthened the effect of ceftriaxone on both ions fluxes. Kanamycin depressed H+ efflux more as compared to ceftriaxone, which was also strengthened with EMI. The results of E. coli H+ and K+ transport systems activities depression by irradiation and the irradiation effect on DCCD and antibiotics action indicated the EMI and antibiotics causing primary changes in the bacterial membrane.


Subject(s)
Anti-Bacterial Agents/radiation effects , Electromagnetic Radiation , Escherichia coli/metabolism , Escherichia coli/radiation effects , Ion Transport/physiology , Ion Transport/radiation effects , Potassium , Protons , Putrescine/analogs & derivatives
9.
Araraquara; s.n; 2009. 110 p. ilus.
Thesis in Portuguese | LILACS, BBO | ID: lil-590725

ABSTRACT

O objetivo deste trabalho foi avaliar a quantidade de peróxido que passa da câmara pulpar para a superfície dentária externa durante o clareamento interno no esmalte, cemento e dentina. Foram utilizados 50 incisivos bovinos extraídos que receberam aberturas coronárias, as raízes foram cortadas a 5 mm da junção amelo-cementária e foi realizado um tampão de 2mm de ionômero de vidro selando a entrada do canal. A extremidade apical dos espécimes foi isolada externamente com resina composta fotoativada. Os dentes foram então impermeabilizados completamente, deixando exposto somente as áreas a serem estudadas. As câmaras coronárias foram preenchidas com peróxido de hidrogênio a 35%. Os dentes foram divididos em três grupos experimentais e dois grupos controles, com 10 espécimes cada. GE – esmalte exposto a ser avaliado; GC – cemento exposto a ser avaliado; GD – dentina exposta a ser avaliada; e dois grupos Controle: GC1 – sem a presença de clareador internamente e sem impermeabilização e GC2 – câmara pulpar preenchida com clareador e impermeabilização total. Cada amostra foi colocado no interior de reservatórios individuais com 1000μl de solução tampão de acetato 2M (pH 4,5). Após 7 dias a 37±1ºC a solução foi transferida para um tubo de ensaio onde foram adicionados 100μl do corante violeta leucocristal e 50 μl de peroxidase, resultando em uma solução de coloração azul. A mensuração da absorbância foi feita em um espectrofotômetro e convertida em μg/ml de peróxido. Para avaliar se houve diferença entre os grupos experimentais e controle, realizou-se os testes de Kruskall-Walis e Dunn-Bunferroni e os resultados mostraram os íon passaram mais pela dentina exposta, seguida da dentina recoberta pelo esmalte e dentina recoberta pelo cemento, sem diferenças estatísticas. Todos os grupos experimentais foram diferentes dos controles...


The aim of this study was evaluated the pulp chamber penetration of peroxide bleaching agent to the root surface during the internal bleach technique in the enamel, dentin and cement. Bovine teeth were sectioned 5mm apical of the cemento-enamel junction and was performed a 2mm cervical seal with glass ionomer cement. The external apical part of samples was filled with composite resin. The teeth were divided into three experimental groups and two control groups: GE – exposition of enamel; GC – exposition of cement; GD – exposition of dentin and control groups: GC1 – no presence of internal agent bleaching e no waterproof and GC2 – pulp chamber filled with bleaching agent and total waterproof. Each sample was placed inside of individual flasks with 1000μl of acetate buffer solution 2M (pH 4.5). After 7 days, the buffer solution was transferred to a glass tube where leuco crystal violet and horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis, and Dunn-Bunferroni tests. The results showed that the ions penetration was higher in dentin followed by enamel and cement. All experimental groups presented statistical differences to the control groups.


Subject(s)
Hydrogen Peroxide , Ion Transport , Tooth Bleaching
10.
Acta gastroenterol. latinoam ; 36(3): 113-124, 2006. ilus
Article in English | LILACS | ID: lil-461597

ABSTRACT

Chronic hypobaric hypoxia is a physiological environmental stressor. While its effects on most major organsystems have been extensively studied, few works have addressed hypoxia-induced changes in intestinal transport.The effects of cyclooxygenase blockade with indomethacin on short-circuit current (Isc) and oxygen consumption(QO2) of the distal colonic epithelium ofcontrol rats and rats submitted to hypoxia for 10 days at 0.52 atm were studied. Isolated mucosae weremounted in an Ussing chamber modified for measuring QO2 while preserving transepithelial vectorial transport. Amiloride was added to the mucosal hemichamber to block a sodium component of Isc present in hypoxic rats. In this condition, basal Isc did not differ between the hypoxic and the control group, but QO2 was higher in the former. Indomethacin (30 ìmol/L)reduced Isc to the same extent in both groups, but QO2 reduction was larger in the hypoxic group. Pharmacologicalblockade of chloride secretion and a low-chloride solution abolished the indomethacin-induced reductionsof Isc in both groups, and the reduction of QO2 in controls, and attenuated but did not suppress the QO2 reduction in the hypoxic group. Linear regressionanalysis of QO2 changes versus Isc changes yielded a significant correlation for both groups, with regression lines with the same slope, but a higher position in hypoxic hypoxic animals. Results suggest that spontaneously released prostaglandins are equally important for maintaining colonic chloride secretion in hypoxic as in normoxic rats, but that, in the former, indomethacin has an additional effect on QO2 which is unrelated to ion transport.


La hipoxia hipobárica crónica es un estresante ambiental fisiológico. Aunque sus efectos se han estudiado en lamayoría de los sistemas orgánicos, hay pocos trabajos sobre su influencia en el transporte intestinal. Se estudió el efecto del bloqueo de la ciclooxigenasa con indometacina sobre la corriente de cortocircuito (Isc), el consumo de oxígeno (QO2) del epitelio del colon distal de ratas controles y fueron sometidas a hipoxia durante 10 díasa 0,52 atm. Se montaron preparados de mucosa aislada en una cámara de Ussing modificada para medir QO2 preservando el transporte vectorial transepitelial. Se añadió amilorida a la hemicámara mucosa para bloquear un componente de la Isc debido al sodio presente en ratas hipóxicas. En esta condición, la Isc basal fue similar en ambos grupos, pero el QO2 fue mayor enlos controles. La indometacina (30 mmol/L) redujo igualmente la Isc en ambos grupos; siendo la disminuciónde QO2 mayor en el hipóxico. El bloqueo de la secreció de cloruro (farmacológico y por omisión del ión) suprimió la disminución de Isc en ambos grupos y deQO2 en el control, y redujo, sin abolir, la disminución de QO2 en el hipóxico. El análisis de regresión lineal de cambios en QO2 versus cambios en Isc mostró en ambos grupos correlación significativa con líneas de regresiónde igual pendiente, pero más alta en el hipóxico. Los resultados sugieren que las prostaglandinas liberadas espontáneamente son igualmente importantes en mantener la secreción de cloruro en ratas hipóxicas y normóxicas,pero en las primeras la indometacina tiene además un efecto depresor del QO2 no relacionado con el transporte iónico.


Subject(s)
Animals , Male , Rats , Hypoxia/metabolism , Colon/drug effects , Indomethacin/pharmacology , Oxygen Consumption/drug effects , Colon/metabolism , Disease Models, Animal , Indomethacin/metabolism , Oxygen Consumption/physiology , Rats, Wistar
11.
Journal of the Korean Balance Society ; : 21-28, 2006.
Article in Korean | WPRIM | ID: wpr-131280

ABSTRACT

BACKGROUND AND OBJECTIVES: The Na+-K+-2Cl- cotransporter-1 (NKCC1) is a member of the cation-coupled chloride transporter that participates in salt transport and cell volume regulation in diverse tissues. NKCC1 deficient mice exhibit deafness, and have structural alterations in the cochlea. In addition to hearing loss, NKCC1-deficient mice show a shaker-waltzer behavior, which suggests a vestibular system defect. This study investigated the morphology of the vestibular system of NKCC1-deficient mice. In addition, this study evaluated whether NKCC1 mRNA and its protein are expressed in human vestibular end organs. MATERIALS AND METHOD: NKCC1-deficient and wild type mice aged 4~5 weeks were sacrificed. Their heads were cut in the midsagittal plane, fixed and decalcified. For light microscopy, 5 m sections were cut, and stained with hematoxylin and eosin. Human vestibular end organs were harvested during acoustic tumor surgery via translabyrinthine approach. Some of these end organs were used for the total mRNA extraction and the remainder was used for immunostaining. RT-PCR was performed for NKCC1. RESULTS: The scala media of the cochlear of the NKCC1-deficient mice were collapsed but the bony labyrinth of the cochlea appeared unaffected. However, the semicircular canals (SCCs) were much smaller than those in the wild type. Furthermore, the SCCs were completely missing in some NKCC1-deficient mice. NKCC1 mRNA was expressed in both human macula and crista ampullaris and its protein was expressed mainly in the transitional and dark cell area of the human crista ampullaris. CONCLUSION: NKCC1 may be essential for maintaining the vestibular morphology and its function in mice and NKCC1 is well expressed in human vestibular end organs.


Subject(s)
Animals , Humans , Mice , Cell Size , Cochlea , Cochlear Duct , Deafness , Ear, Inner , Eosine Yellowish-(YS) , Head , Hearing Loss , Hematoxylin , Ion Transport , Mice, Knockout , Microscopy , Neuroma, Acoustic , RNA, Messenger , Semicircular Canals , Semicircular Ducts
12.
Journal of the Korean Balance Society ; : 21-28, 2006.
Article in Korean | WPRIM | ID: wpr-131277

ABSTRACT

BACKGROUND AND OBJECTIVES: The Na+-K+-2Cl- cotransporter-1 (NKCC1) is a member of the cation-coupled chloride transporter that participates in salt transport and cell volume regulation in diverse tissues. NKCC1 deficient mice exhibit deafness, and have structural alterations in the cochlea. In addition to hearing loss, NKCC1-deficient mice show a shaker-waltzer behavior, which suggests a vestibular system defect. This study investigated the morphology of the vestibular system of NKCC1-deficient mice. In addition, this study evaluated whether NKCC1 mRNA and its protein are expressed in human vestibular end organs. MATERIALS AND METHOD: NKCC1-deficient and wild type mice aged 4~5 weeks were sacrificed. Their heads were cut in the midsagittal plane, fixed and decalcified. For light microscopy, 5 m sections were cut, and stained with hematoxylin and eosin. Human vestibular end organs were harvested during acoustic tumor surgery via translabyrinthine approach. Some of these end organs were used for the total mRNA extraction and the remainder was used for immunostaining. RT-PCR was performed for NKCC1. RESULTS: The scala media of the cochlear of the NKCC1-deficient mice were collapsed but the bony labyrinth of the cochlea appeared unaffected. However, the semicircular canals (SCCs) were much smaller than those in the wild type. Furthermore, the SCCs were completely missing in some NKCC1-deficient mice. NKCC1 mRNA was expressed in both human macula and crista ampullaris and its protein was expressed mainly in the transitional and dark cell area of the human crista ampullaris. CONCLUSION: NKCC1 may be essential for maintaining the vestibular morphology and its function in mice and NKCC1 is well expressed in human vestibular end organs.


Subject(s)
Animals , Humans , Mice , Cell Size , Cochlea , Cochlear Duct , Deafness , Ear, Inner , Eosine Yellowish-(YS) , Head , Hearing Loss , Hematoxylin , Ion Transport , Mice, Knockout , Microscopy , Neuroma, Acoustic , RNA, Messenger , Semicircular Canals , Semicircular Ducts
13.
The Korean Journal of Physiology and Pharmacology ; : 225-2002.
Article in English | WPRIM | ID: wpr-728286

ABSTRACT

Kanagawa hemolysin (KH), an exotoxin produced from Kanagawa phenomenon-positive Vibrio parahemolyticus, has been shown to possess various biological activities including hemolysis, enterotoxicity, cytotoxicity, and cardiotoxicity. The aim of this study was to investigate the effect of KH on the cardiovascular system and its mechanism, employing in vivo and in vitro experiments of the rat. Intracerebroventricular (icv) administration of 100 mHU KH produced a marked and continuous pressor effect (icv KH-pressor effect), and the icv pressor effect was not repeatable. However, intravenous (iv) injection of the same dose of KH induced a prominent depressor effect (iv KH-depressor effect). The icv KH-pressor effect was inhibited by acid-denaturation, while the iv KH-depressor effect was not. Simultaneous icv administration of the three agents (ouabain, diltiazem, or bumetanide: 10ng/kg each) significantly reduced the pressor effect. The icv KH-pressor effect was inhibited by treatment with iv phentolamine or chlorisondamine, but was not affected by iv candesartan. The iv KH-depressor effect was repeatable and was attenuated by treatment with iv NAME or methylene blue. In vitro experiments using isolated thoracic aorta, 10(-6) M phenylephrine (PE) and 50 mM KCl produced a sustained contraction. In rings contracted with either agents, KH showed relaxant responses in a concentration- dependent fashion and the relaxation (KH-vasorelaxation) was not dependent on the existence of the endothelium. The KH-vasorelaxation in the endothelium-intact rings contracted by PE was abolished by methylene blue treatment. In summary, the present findings suggest that in the icv KH-pressor effect the cation leak-inducing action of KH is implicated, which leads to the increased central sympathetic tone, that the iv KH-depressor effect results from the vasorelaxation via NO-guanylate cyclase system, and that the KH-vasorelaxation is independent of the endothelium and the guanylate cyclase system is involved in it. In conclusion, the mechanism of KH producing the icv pressor effect may not be identical to that of KH producing the iv depressor effect.


Subject(s)
Animals , Rats , Aorta , Aorta, Thoracic , Blood Pressure , Bumetanide , Cardiovascular System , Chlorisondamine , Diltiazem , Endothelium , Exotoxins , Guanylate Cyclase , Hemolysis , Ion Transport , Methylene Blue , Phentolamine , Phenylephrine , Relaxation , Vasodilation , Vibrio
14.
Journal of the Korean Ophthalmological Society ; : 1395-1406, 1995.
Article in Korean | WPRIM | ID: wpr-84467

ABSTRACT

The rabbit cornea was studied in vitro in modified Ussing chambers to determine the effects of ion transport inhibitors and hydrogen peroxide(H2O2) on ion transport through the cornea by measuring the bioelectric properties. Apical(tear side, T side) addition of furosemide, bumetanide and SITS were ineffective on resting Isc(short circuit current). Apical addition of 1.0mM amiloride(Na+/H+ antiport inhibitor) and NPAA(Cl- channel blocker) markedly reduced the resting Isc, but basolateral(stromal side, S side) addition of amiloride was ineffective. The site of action of these agents was the apical membrane. H2O2, an oxygen free radical, markedly increased the lsc when was added to the T side, but S side addition of the H2O2 was ineffective. To determine the degree of cellular catalase participation in protection against H2O2 induced injury the cornea was pretreated with ATAZ for 30 min prior to H2O2 action. The increase of lsc by H2O2 was markedly potentiated after pretreatment with ATAZ on T side compared to that of S side addition. This result indicates that the corneal endothelial H2O2 may be largely degraded by catalase. When H2O2 was added to the T side, Isc was raised by increased ion transport. All ion transport inhibitors that were used inhibited the H2O2 effect on Isc. Moreover, amiloride and NPAA markedly inhibited induced lsc by H2O2. These results suggest that H2O2 stimulates the corneal epithelial ion transport and that its site of action is apical membrane Na+/H+ antiport system and CI- channel system.


Subject(s)
4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid , Amiloride , Bumetanide , Catalase , Cornea , Furosemide , Hydrogen Peroxide , Hydrogen , Ion Transport , Membranes , Oxygen
15.
J Biosci ; 1987 Sept; 12(3): 175-189
Article in English | IMSEAR | ID: sea-160576

ABSTRACT

The mechanism of ion transport by carrier ionophores is investigated. The electrostatic potential is used as index of the binding energy of a cation with valinomycin and enniatin B. The ion binding capacities of these ionophores are studied as functions of conformation and of distance of an approaching ion-complex. The energetics of dirnerisation and the binding energy profile of an ion in dimers of valinomycin and enniatin B are examined. The binding energy profiles and the electrostatic potential surfaces of valinomycin and enniatin B are compared in relation to their biological activities.

16.
J Biosci ; 1984 Mar; 6(1): 1-16
Article in English | IMSEAR | ID: sea-160226

ABSTRACT

Conformations of valinomycin and its complexes with Perchlorate and thiocyanate salts of barium, in a medium polar solvent acetonitrile, were studied using nuclear magnetic resonance spectroscopic techniques. Valinomycin was shown to have a bracelet conformation in acetonitrile. With the doubly charged barium ion, the molecule, at lower concentrations, predominantly formed a 1:1 complex. At higher concentrations, however, apart from the 1:1, peptide as well as ion sandwich complexes were formed in addition to a ‘final complex’. Unlike the standard 1:1 potassium complex, where the ion was centrally located in a bracelet conformation, the 1:1 barium complex contained the barium ion at the periphery. The ‘final complex’ appeared to be an open conformation with no internal hydrogen bonds and has two bound barium ions. This complex was probably made of average of many closely related conformations that were exchanging very fast (on nuclear magnetic resonance time scale) among them. The conformation of the ‘final complex’ resembled the conformation obtained in the solid state. Unlike the Perchlorate anion, the thiocyanate anion seemed to have a definite role in stabilising the various complexes. While the conformation of the 1:1 complex indicated a mechanism of ion capture at the membrane interface, the sandwich complexes might explain the transport process by a relay mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL